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1.0 SUMMARY

> Large-disturbance equations of sirplene motion suitadle for use
vith modern digital or analog computers are derived from the
gerneral equations of rigid-body motion. The procedure follcved
1{s to find solutions in each rare for the steady.flight conditions
about vhich the desired motions .epresent perturbatioms. The
variables of motion are expanded to include thege tteady-flight
valucs, aad the steady-flight solutione are applied. im order to
eliminate the steady-flight forces and moments. - _

\
_Two specific cases are carried out to final form. These are:

(1) Six degree-of-freedon ejuations, based on arbitrary
body axes, with small longitudinal velocity, sideslip,
and angle ¢f attack perturbations. .

(2) Pive degree-of-freedom (constant longitudinal velocity.
equations, hased om principal axes, with small sideslip
and angle of attack perturbations, and with the effects
of gravity simplified. )

The first set of equations is shown to be ecpecially suitable ‘
for use in fire-control or tracking studies, while the second . |

9 - set of equations 1s intendcd for use in calculations imvolving ;
repid rolling maneuvers. .

Auxiliary equstions are developed for the conversiorn of wind-
tunnel data to body-axis stability derivatives and for the
{’erations required to obtain numerical solutions of the steady-
fiight equations of mction. Also, ag an aid in calculating and
irterpreting instrument readings in conjunction with large-dis-
turbance motions, the r~adinms of attitude-, velocity-, and
acceleration-measuring instruments are derivcd.
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3.0 INTRODUCTION

The equatior's of rigid body motion referred to body axes de-
veloped by the Swiss mathematicien Leonhard Euler are the basis

- for all airplene dynamic stavility theory. These equations have
been most widely used in aeronautics in their lipearized form,
and concepts guch as the period and time to damp to half.amplitude
of an oscillation, the ncutral point, and the transfer function
are rigorously defined cnly in terms of th2 linearized equations.

Linearizotion of Euler's equationc, as proposcd ty E. J. Routh,
requires that the motions described be restricted {0 small per-
turbations ebout an initicl coandition of stecady motion. An
irportent sizplification in the acronautical field occurs when
the initiel steady motion is a case of “symmetric' flight, in
vhich the airplane’s plene of eymmetry remains fixed in a ver-
tica) position. Small disturbances from steady symuetric flight
are described by two {indcpendent gets of three simultaneous
equations of notion, instewnd of by the generel single set of
six sl:multeneous cquatiors. In the general lireerized c=ce,
hovever, the initial steady motion about which small perturbe-
tions occur can te a severe mzneuver, such as a steeply bsnked
turn, a repid roll, or a spirel dive. It ic only in casec

where the perturbations or disturbances themselves pust be ellowed
to be large that the linearized equuilons of motion sre inappli-
ceble.

The developrent ot certain speciz) non-linear forms of the
equations of gisplene moticn which ¢y to lerge Aistvrbances
frem stoady flight i< the sutject of this report. Specific
appliczetions <nich ravs Yeon ocncider:zd ave:

(1) Fire-control studies, where tne egirplane =.y be re-
quired to perform exireme :raneuvers while trecering a
target

(2) Caizuiution ot r&pfN  ITIIR marsiivers end sinfiler
flicht conditlons pcssible with modern airplares

The inadequacy of the lirearized smell-perturbntion equations
of motion for edther of thute npplications hec been estoblished.,
In the expreccion of the equations of this report ir form suita-
ble for maschin» comwmtotion, lonzitudinrul velocity and cngle
of sildecliip and attncx disturionnes arve restricted to cmall
values, as in the linecarized theory.
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h,C REFERENCE AXES, SYMBOLS AND DEFINITIONS

k.1 Reference Axe:

The large-disturbence equations of airplane motion ldeveloped in
this report are bzsed on systems nf axes which ere fixed in the
airplrne, or body axes. It is often expedient to comsider a
apecial case of body axes called princinal axes, in which the
X-, Y-, and Z=axes coincide with principal exes of inertic.

For any set of body axes, however, the followliag definitions
are uscd. The pxes are orthogoral, haviug their origlus at

the airplune's senter of grevity. The X-axis ites within the
airplane's plane of symmetry, and is rositive fcrward. The Z-
axis 1s also in the plane of symmetry, and is positive towards
the bottom of the airplane. The Y-axis is perpendicular to
both X and Z, and is positive townrds the right ving. Positive
senses of gquantities referred to body uxes are governed by the
positive directions of th: exes themselves, following the right-
hand rule in the case of angular velocities and moments. Body
axe3 are illustrated in Fipure 1.

Baric aeroldynanmic data used in the ecuztions of this report
are assumed to have been obtained on wind-tunnel stability
axes. The wind-tunncl ctatility axis system is defined identi-
cally to airplane body axes except that the Z-stabtlity axis

is perpendicular to the relative wind, or approximately to the
wvind-tunnel axis. In addition, the origin of wind-tunncl ste-
bility axcs may not coincidc with the assumed sirplane center
of gravity. '

4.2 Symrtoels

Lengyth i1s measured in {eet, mass in slugs, time in seconds,
and ansles in radienc, unless specified otherwise.

b = Wing spen
¢ - Wing Jhved (Fean Aerodynamic Chord) i
Cps CL, Te = Drag, 1ift, and thruct cocfficients. Cp = D/Sq

CL = L/sq

TS = T/Sq

—t e . —
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Cy» Cr , Cp.', €1, C1,. = Moment of inmertia and product of
Iy' "hy* "Iy T’ Tk inertia coefficieats.

cIX - ;x/3q1b
C;r = Iy/ Sq,¢
clx' - ]:!/sqlb
Cp, = Ip/59)0
chz = IXZ/Sqlb
C‘, Cp» Cn = Rolling, pitching, end yawing moment coefficients.
¢, = L/sq.
Cg = M/Sqc
. Cp = N/Sqb
Cx» Cy, CZ = Longitudinal, side, and pormil foice coefficients.
Cx = X/Sq
Cy = Y/Sq
Cz = 2/5q
St S g? Oy = 38( )30, 0y, 3¢ B
S50 B g Oy = 26 /0 00 B oe o
S, €y Gy T O )/@(po/2V}), 9C y/B(gc/2V),

/q ()
§ ac( )/a(rb/QVl)

C( )aq :ég%’ C( o’ etc.
4@ = Accelerozeter dumping constant
D, L, T = Drug, 1ift, and nct thrust
f = Acceleromzter pendulum leugth
[G] » Cyro mitrix

8 = Acceleration of gruvity

H = Eagin: snmulae momantum (defdned es posltive lor right-hund
rotution, vicwed from the reur)
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u, v, v= Dicturbance longitudinal, lateral, and normal limear
velocities of body axes

U, V, ¥ = Llongitudinal, lateral, and normal limear veloci.les
of btudy axes

u' = Dimensionless small-disturbance valocity variable, u/Vl
V = Toial velocity

W = Oross weight of airplane, mg
X, ¥, 2 = Distances along X, Y and ™ body (airplane) axes

X, ¥, Z = Longitudinil, side, 2nd normal aserodynamic forces
along body axes

x( ) y( ) z( ) = Body axes stabtility derivatives

X( )~ X i

Yy = Y 1
( ) ST—T qlS

Z()-OZ__}._
aty Q3

Zp = Perpendicular distance of thrust axis bezlow center of
gravity
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3, ), kK = Unit vectors along X, Y and 2 body (atrplane) axes

IX’ Iy, Iz, Ixz = Moments of inertia atout the X- Y- and 2-
and oroduct of inertia about X and Z.

I = Accelesometer pendulum polar moment of inertia
ip = Angle of incidence of thrust axis to X- axis.
k = Accele.ometer spring constant

t( )» m( )? n( ) " Body axes stability derivatives

F § = 9L 1
O 3
u( ) - oM _!._
2( ) q3S¢

.n( ) = ON 1
az Sqle

1, m, n ~ Unit vectors along 4z, YI, and Zy instrument cxes

L, M, N = Rolling, pPitching, and ,uawing aerodynamic moments

[L] = ortenta*fon metrix

B a Load factor

m = Mauss of airplane

m' = Accelerometer gefsmle mass

Pl maRlstsime e Mg, plieniag, TLdd yuwing angular
velocities '

P, Q, B = Rolling, plichiig, cnd yawing angular velocitins of

body axcs
Q = Dynemic preciure, (P/?) V-

= Radius vector of iustrument loeation to airplunc's center

of gruvity

= Op=vrctor d/dt

(%]

axes,

1Y)

» Xy v = Uult vectors relating

S = Wing or~y

to vceclerometer (Sce Figure 7)
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B', a' = Dimensicnless smsll-disturbance velocity variables.
8 = VA,
a = wvAN,
B, a = Sideslip angle and angle of attack.
8 = sintvy
a = tanl wW/u
¥ = Fiight path argle

# 8 = Control surface disturbance angle s

N o g

Angle of nose-up incidence of fuselage reference line relative
to X - principal axis

L))
]

= Accelerometer damping ratio

Angle of attaszk of X - principal axis

N A &

.- » Alr density, also tilt angle ot svnsitive direction of
@ accelerometer to the horizental

G I At
-

T = Tme factor, mpN,

v, 6, ¢ = Oricntation angles of reterence axes to arbitrary earth
axes

[ ]
7", g, ¢ * Disturbance values of the orientation angles
A = Total angular velocity

wn = !ccelerometer undamped natural frecquency

Subscrip_ts [

a, e, r = Alleron, elevctor, rudder

8 = Accalerometer gensitiva direction : - |

t = Normal to pendulum accelerometer support axis and ecensitive
dircctions

u s Pendulum accelerometer support axis directiion

U I + Instrunent or instrunent axes

o « npplicd force or moment

1l ¢ Oteady flight
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4.3 Definitiory

8teady Flight is defined as flight with zero rates of clange ]
of tl'% if{near snd angular velocity variables, or vith

0sVsWnPsQaR=0. Stesdy sideslips and steady level turns or ,
steady helical turns about a vertica' space axis are possible 1
steady flight conditions. Steady pitching flight ic more ]
properly referred to as "quasi-steady”, since U or ¥V cannot '
both rezain zero over a long period of time {f Q¢ O.

Straight Flight is defired as flight with zero vslu=s of the
angular velocity variables P, Q, and R. Steady sideslips
and dives or climbs with or vithout longitudinal acceleration
are some straight flight conditions.

Symmetric Flight is defined as flight with a fixed, vertical,
pesition in space of the plane of symmetry. In symmetric
flight, the varisbles P, R, ¢, and V remain zero. Wings-
laterally-level dives, climbs, pullupe and pushdowns, with
zero sideslip, are some syumetric flight conditions.

H Asymmetric Flight is defined as flight in vhich the plape of
syxmetry does not remain in & fixed vertical position. Souwe
G or all of the varisbles of motion P, B, ¢, or V may be expected
to be otter than zero in asyr=ciric flizht. Examples of
asympetric flight include sideslips, rolls, and turns.
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2.5 DuVEIOPMENT OF THE EQUATIONS OF MOTION

5.1 QGeneral E_‘gmtions of Alrplane Motion

The genersl equations of airplane motion are a set of nine
simultaneous non-linear differential equations, listed here
as Equat.ions (1) to (3):

Applied Rates of Change of
Aerodymamic Gravitations? Linear .
Forces Forces Mosentum
X -ng sin B = m (U-VR+WQ)
Y +mg cos 6 sine = uw (V-WP+R) (1)
2 +mg cos 0 cos ¢ = m (W-UQVP) !
Applied Rates of “hange of Rates of Change
Aexrodynamic Angular Momestum, of Engine Angular
Moments Engine Stopped Momentum
| gummenn 1 r " -t v
& L . 1‘9 = Ixp(R4PQ)+(1z-Iy )R - QB sin in ;
M = I)Q+ rm(pz.!12)+(xx-m)m + PHy sinir+ RH, cosin (2)
N s RReIG(-PIR){Iy-L )G - QHe cos 1,
it
Rates of Change :
of Orientation Purictions of
! Angles Angular Velocities
r— f o’ |
; ¢ = Y+(Qsino +H cos 9) tan © ;
' o = Qcos ¢ -R 3in e (3)
POy .‘——" . 3. Mo i . ohatiy,
v A" w@ee ¢ 1 L4 wied 1+ ) www J
Equations (2) .pply to eirplanes having mirror syrmetry about the

X-Z plane except for engine angular mowentuzm. Consequently, X
the effects of rudder and aileron d:flections ¢r. the inertia '
parameters are neglected. The acrodynamic foress and moments

in Equations ().) and (2) ere uaually found to depend upon the
liic v and anguia. velocities and their derivatives, the control
swface angles and iheir derivatives, air density, Mach nunber,
and possibly other fac:tors as well. These functional) deperdences

are r2pregented by Equation (4).
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X=X (‘i':”w,',u'v'?'s:,' k',','":,'.Q iy .'?,' PN, iannis) )

Y «Y( . )

222 ( - )

Lel( " ' ) >(8)
M= HM( " ) ¢

Nen( " ‘ )

It 4s usua). to find that much simpler functions thanp i.nplied‘by Equation
(k) are sdequate in engineering prodblems. In sddition, the variable set
U, V, W 18 generally replaced by the equivalent set ¥, B, a, vhere:

UaVcos acos B

VeVsing H')')
W =V sin a cos B '
alternately: ;

V= VYRev? o

8 = sin") (VW) >(54)

a = tan~t (W/U)

Derivations of Equatiors (1) and (2), with the exception of the engine

pogentum terms, mAay be found iu Reference 1. The engihe momentum terms
in Equation (2) are derived in Reference 2. Derivations of Equations
23; and (5) are given in Reference 3. Dimensiopless forms of Equations
1) and (2) are obtained by dividing by q3S apd by qle or q18c

respectively:
B £ s av=<art /| A3 ") B SR Sadeda sy

qls "l \ 2 ! #Wd)
l.+r§2? cos © sin ¢ = 2T (V « WP + IR) 1A
9,5 1 v -(4)
Z_ *gr-scosecoso-gj(fl-UQ+V?)
TR vi J

L p R + PQ)+(Cq,-Cy )R - Fesin Y )
ommmmaes B c - + + - - ’
a5 I,P - CIp(R + PQ)+(Cr, Iy )R ng’ ¢

M A b (p% r% e b Restntop, Heenr ™ o
——— - 71 )JPRe NofiD0. CA
8,58 C1yQ + CIyyx (P"-R™)e(C1¢-"1 )c + tiqf P+ :iqf R f-( )
71—"%; . CTZ!i + Clyg (-Pei " o (F'}.y - CIx)PQ = Hecosip Q

1 b.y)n J
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5.2 -Flight Equetions of Motion s

T™Hhe steady-flight case of the general equations of airplans
motior is useful for eatablishing initisl conditicns for the
pumerical solution of the gensrel equations, &s well as for
oaloulstions involving steady flight only. In ths most geasrel
expression the ateady-flight equations of airplans motion sre
obtained from Equations (1) anmd (2) by ql{.ﬂ.l:ttng the terms
involving derivatives of the variables(!,V,v,P,Q,F), and
employing the steady-flight subscript 1 throughcut.

Tvo special cases of the stesldy- flight equations of airplane
sotion are of particular interest, and these cases are
discussed in the followving sections.

5.2.1 Stesdy Pitching Symmetric Flight

Polling-pullout or pushovn maneuvers may be performed LY
applying abrupt sileron deflections vhile in steady symmetric
up or pushiowns. Using the dimensionless forms of Equations

1) and (2), vith a obtained from Equation (5), the steady-flight
equations vhich apply are:

% ¢x1 .'Vﬁls sin (¥ + cq) = 21Q; sin g
&, = 0

(.7Zl 4‘-2&5 cos (D’l + “1) = -21Q, cos @
sinip o

cl‘l ® o ?q—lrm Ql

Cu, = 0 7)

cnl - e H.0081TQ1 .

Sql'b

(1)
L9

The steady pitching velocity Q; is often cxpressad in'terms of ~~ '~ 7]
the normnal load factor ng . Load factor is defined as the ratio

of applied serodymamic force in the specified Airection to the
gross weight. Thus:

z .
= -9 (&)

The negative sign in Equatinn (8) {s used to obtain agreement
vith the usual sign convention. Substituting Equation (8) iato
the third of Equations (6) and solving for Q;,

Km’ Q -mgga—l- [nzl-cos (714013]. (9)
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_ The mumciical eolutions of Equations (6), (7) anda (9) uxe ;
discussed ¢n Section 8.1. Because of the arbitrsry functional ]
depsndence of cx1 end czl on angle of sttack, this solution j

]

{

4

is found by {teration.
5.2.2 3teady Straight Sysmetric Flight

Steady straight symmetric flicht may be used as a reference

for studying almost any maneuver, using the large-éisturbance
equations of airplane motion. However, because of practical
limitations in the way of information storage on either digital
or amalog computers, it will be found expedient to establish
initial or reference conditicns vhich are as cloge to the desired
marsuver as is possibvle. For example, although steady straight
symmetiric flight may be used as a reference for studying the roll-
ing pullout maneuver, initial conditions vhich includc the steady
pitching portion of the maneuver (&8s in 5.2.1) eliminate the
necessity for machine ccmputetion of that much of the problem.

Where steady straight symmetric flight is choeen as the initial
steady fn%bt condition, the applicable equations ~f motion are
Equations (6) and (7), vith Q; = O.

Expansior.s of the Variables to Include Initial Conditions

A9
w

The steady-flight portions of the genersl equations of airplane
motion can be eliminated from the e:;uaticns. As previously
indicated, this will reduce the amount of information storage
needed for numerical solutions of the equations. The steady-

‘- flight portion of the equations may be eliminoted it the variables
of the motion are expanded to include initial comditions. This
is done in the following equations for the attitude angles, the
angular velocities and ¢ ccelerations, and the linear velocilies
and acecelerations. It should be appreciated that in these
equations the disturbance quantities indicated by lover-case
symbole or by the prefix A are not nccessarily small dfisturoances,
as they are in Reference 4.

e eeie e s sens aamms

0 =6 + 0 (10)

and
sin 6 = sin 6, cos &+ cos ©) sin &
(1)

cos O = cos el cos @ - rin 81 sin &

¢ s 0 4 P (12)
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sin ¢ = sin ¢, COG QP + cos ¢, sl @
' )
€08 ¢ = Cos ¢; Cos@ - ein ¢) sin P J
ﬁ
P = Pl”
QR = Q +9q > (1h)
R =« R +7 o
< . 1
P =p
Q=34 >=(15)
R = r _
f = h#M-M

a-alom

B =28

a = ok

v -V1+N

v U +u = VYV coe Bcos &

(Vy + ) cos &8 (cos &) cos Ax - sin oy sin Aq)
V =V sveVYeinp
Wl*dl) sin A8

W o= H3+v-VcouBsina

« ¥y ¢+ W) cos o8 (ein ) cos &a + cos @} sin 4q)

~
f(16)'

j}%l?)

(18)

>(19)

* The stcudy-state sidealip f; 1a set = 0, as suggested in Section 6.0.
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U-\'a--(vl_ + ) conaa(unalcocAa+cooalunba)Aé B
«(Vy; + &) sin 68 (coe @) cos Aa-sin 0y einax)AB

+ OF cor B (cos &y cos AQ - sin & sin &Q)

v-v-w1¢w)cosMAB+dunA&

\'i-\'t-(vl-o&') cosAa(coralco-Ac-unoloinAa)A&
-V, + &) stn 28 (sinalcoaAu4cosal sin &a)af

4dcoaaa(sinalcosm+coaalolnaa)

Equations (18) to (20) express lincar velocities and accelerations
slong airplane body axes in terms of the large-disturbance variables

&N, 68, and Aa. Aerodynsmic flow breakdown always acts io
1imit the practical ranges of these variables, particuiasrly the

latter two. This makes it expedieat to use the small-disturbance
lipear velocity variablesy', B', and a' in place of &N, A8, and
A0 respectively, even though the angular displacement and velocity
disturbance variabdbles y,&,¢, p, qQ, and r are slloved to take

on large values, The small-disturbance lipear velocity variables

are defined as:

u
uw' s -

: )
B! = ¥

A )1

v
a s -

Ya .

~(21)

Follovine 2.M. Jones on page 146 of Reference &, the total velocity

change &Y is expressed in terms of u' and Q' as follows:
From Figure 3: ’

V2 = 02 + V2. w2

Differentiating:

V) & = 2U) u+2Vy) v+2Wv

Since we assume that Vl 2 0

N . u'.cos + @' sin «a
\ ' | i

Frow £quaticn (1Y)

OB = ciu‘l v

"l"i"

r(ZO)

-/

(23}
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Since both v and AV are emsll the sine equals the angle and
A is negligidle coopered vithV). Thus, from Equatioas (21)

a8 = B . o (2»)
Prom Equations (16) and (i9):

IY-EN- TN
ANl B
Uy+u u

N w1+' "1 ° . .
= tan”! fT+u W

(Wyew) W
1 zUpus u
2

Simplifying and substi*uting VE for Ula + %<,

cos & for U3 /§» , and sin &y for W1 ) ,

oa © tan®l V cos @ - usin a
V1 + u cos M +v siny

\o/ v and u are botb assuted smnll, and negligible compared vith
V3. Thus, from Eguatiom (21): .
&x = Q' cos Gy - u' sin Gy (25)

NRote fimally that since f' ard a' are small,
sin B' = p' cos B' = 1.0 |

(26)
sin o' = o' cos a' = 1.0 .
and products of u', §', a', and their derivatives are negligible.

Equations (23) to (26) may now oe substituted ioto Equaticns (19)
and (20), leading to:

U = ¥, (u' +cos ay) )
V = Y18 H27) %
LIS Y (a' + oin ) J ‘
U« V0 R

~ V sV 8 >(28)

' Woe Wy g
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Equations é ?; { g can of course be obtained directly :.
Equations (19) and (21) using these relationshiga from Figure
(with V= 0):

e \
©ra s M - (29)
sin % - u1~1

In nnler to obtain numerical solutions of the equations of
airplane motion the aerodynamic forces ¢nd moments must be
expressed in terms of the linear and angular velocity variables
of motjon. In the general case of large disturbances, these
expressions, symbolired in Equations (%), can be exceedingly
non-lipcar snd complex. These difficultiee arise from aerodyranmic
flow separaticn at large relative flos angles and at high subsonic
Mach numbers, from the interacting effects of large valueg of the
variables like sideslip and angle of attack, and from possible

_ serodynamic bysteresis effects. Where aerodynamic non-linearities
i can be disregarded, Equations (30) are illustrative of the exparsion

R N I N B e L

of the ecrodynamic forces and moments. These equations a~e mads
dimensionless to conform with Equations (1A) amd (2A), and the
y smll-disturbaiace linear velocity varisbles are employed.
) S & bx M
qls Cxl qls (0.1 u' + LS
; X . CY, # covvnnns elec. L(3o)
q,5 1
ete.
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6.0 SPECIAL FORMS OF THE EJUATIONS OF MOTIOR

The ger.-rel eguations of airplane mo“ion for arbitrery body axes are
given with r.asonable generality in Equations (1) to (5). Several
special forms of there equuitiona are developed in this seccion,
mking use of e serieg of approximations vhich are designed to
simplify the equsations as far as possible, consistent vith their
intended uses.

6.1 Equations Suitable for Tracking Studics

In studying the closed-loop dynamics of an automatic tracking
or fire-contro) loop it is typical to calculate the motions

of the attacking airplane from the initiation of sutommtic
tracking o thw iiring point. The initial conditions are
characterized by flight at zero or smll benk angies. During
the mareuver, large bank angle changes may be expected, together
witu airspeed changes that tend to increave as the length of
the maneuver is rroltonged.

Accordingly, the initinl conditions selected for this type
of study are steady straight s_vmetric flight (aee Definitions
end Section §.2.2), where the followirg quantities are gero:

ﬂl Pl Q]_ Rl 01

In the expansions used in these equations of motion the small-
disturt=nce linear velocity variadbles are used and the aerodynanic
forces And JoTents are linearized as in Egustion {30). It may be
appreciated that in particular cases, non-linear aerodynamic

force and momant °‘characteristius may be inserted into these
equations.

Without repeating the lencthy algebraic manipulations iprolved,
the development of the tracking equations of motion may be out-
lined irn these steps:

1. CSubs {tute the velocity, angular position and aerodynamic
force and moment expansion equations (1C) to (15), (27),
(28), ama (30) into Equations (1A) amd (24).

2. Cancel the initial aerodynamic force and moment coefficients,
using Equations (6) and (7).

The final equations of motion are shown : 1 matrix form in Table I.
The column headings of Table I are the variagbles of motion am
functions such as the products ¢f the variables of motion. Tne
rovs reprcsent separnte, irdependent equations of motion. The
tabtular entries are coefficients of the variables or functions of
the variables which appear in the particular equation. Thus, the
firet row of Table 1 18 interpreted as:
(08 )y o4 ' gt | uin G Q + ceene.t 6. 8§, =0

2T K ) ~>*
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If principel axes are chosen as the arditrary body axes of
Table I, L »Oamd oy =7, -

Byuations Suitable for the Calculation of Repid Roilirg
Naneuvers

Modern high-speed airplanes are capadbie of high rolling velocities
starting from either initially streight flight or from pullups

or pushdovns. The immdequacy of the clissical small-dlsturbance
equations of airplane motion to caléulate properly these motions
hag become well knovn.

Thess significant portions of rapid rolling saneuvers generslly
are of short duration after the initistion of the roll, and
sirspeed changes are counsequently small and o[ pegligible
influe ace on the motion. PFurthermore, in conditions vhere non-
linear inertial couplings play ap {rportant part in the mctions
end tle classicul linearized equaticns of motion are least
applicadle, serodynamic and gravity effects are correspondirgly
less significant and more susceptible to drastic simplification.

The initial conditions selected for this type of study are

steady pitching or s'rsight symmetric flight (see Definitions

and Sections 5.2.1 and 5.2.2), vhere the following quantities

are zero: £, Py, Ry, ¢ . The small-disturbance linear velocity

veriables are usged and the aerodynamic forces and moments are
linearized as in Fquatinne (0). Also, constant longitudina).
velocity (u = 4 = 0), and zero pitch ang.., as it affects the
force Aue to gravity (€] = ® s O) are assumed.

The ripal equations of motion for this case are derived very much
as outlined in the previocus scction, and these equations are
sbovn in matrix form io Table II. Principal axes are chosen

as the arditrary body axes, in order to reduce the required
multiplicatiions of variables. This appears to be a reassonable
sixplification for practical computations, since there is no
trackirg control data system with arbitrary body axis orientations
to be supplied with computed airplane motions, as in the first

exagple.

B . ad e emstees b Al et et )
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7.0 STABILITY DERIVATIVES ON BODY AXES

The dbody axes statility derivatives appearing in Tadbles 1 and II

are related to vind-tunnel duts referred to stability axes in ihis
section. It is sesumed that moment transfers to the assumed airplane
eenter of gravity have already been performed on the wind-tunnel data,
1 needed.

7.1 Longitudinal Velocity Derivatives

The steps involved in deriviny the longitudinal velocity
derivatives on budy axes froo wind-tunnel data ar= somevhat
tedious, ond they will be fully illustrated in orly one case.
The 1llustrative example is the body axes derivative x, ., defined
a8 3X 1 . The X force may be written as:

du' qls

X = ¢ (Pl2)V? s (31)
Differentiating
2 _o° .

@ Novw, u' = U~1 eand 8Y/QU = cos &y {rom page 146 of Reference L.
Then:

X 2 . 2
su s Cxy+ + 2 Cx, cos Gy (32)
The derivative Cy .. can have contejbuticns due to compressibility
ana aerocelastic e‘i‘fects in additio. to the effects of angle of
attack treated in Reference 4. Thus:

PRPR ot

da
Cxu, z Cxa aﬁ. + CXM g—‘\-:' + Cxq %%' (33)

From page 146 of reference u4:

oa _ _sin o
0 "W
and

g_(.:' » - 8in o (3%)

S A O ek s AL R At tAGR &

Tho partial derivatives dM/Qu’' end Oq/du' for ardbitrary

oody axee ere not treated in Reference U, so these are derived
in the follovwing steps:

%a Mn!:vl*w

a a

PR S S e

- M (e g (35)
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The differential & is obtained 1rom the t-iel velceity equation:
Y2 o« U2+ V2 4 W2

Differentiating:

Ny & = 20j8U + 2,4V + Ajav

Vith the initial lateral velocity V) equal to gero and vith u's
aUNL , o = QW1 , U3 L = cos Gy , and W, ¥; 5 8in ¢

%}-u'coealq»a'unal (36)

Substituting Equatinon (36) into Equation (35), and taking
partisls:

» .y

g%, = M) cos
37)
:—g, = M) sin

Again:
;= Y
YV v, (2 *’vl)

E N PO T R

From Equation (36), using q = (P/2)y2, and neglecting products
of u' and «':

Q= gvle (1 +2u' cos ) +2a" 8in qy) - (38)

Tekiug partial derivatives:
gﬁl . P’;la cos Oy

(39)
g—g. 'PV.L;- sin o

In the next part of this derivation, the longitudinal end normal
aerodynamic iorce coefficients Cy and CZ are related to the
force coefficients measured on w}nd-tunnol stability axes Cp,

Cp, and to the calculated net thrust coefficient To'. It is
assumed tiat the e¢ffects of running jet engines are all represented
with sufficient accuracy in the wind-tunncl tests except for the
net thrust. That {5, it is assumed thuc the inteke normal force
discussed in Reference 5 and any air intake drag forces are
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included in the forces and moments measured in the wind-tunnei.
This will be the case when the full-scale Jet inlet velocity
retio 1s matched in the wvind tunnel, and the duct inlet details
are represented. With these conditions, Cy and G, are obtained
from Figure 5 as:

Cx = Cp 8in a - Cp cos a + Tg' cos ig (10)
0
Cz = <Cp, cosa-CDaina-Tc' aini.,r

Equations (40) can be differcntiated, yielding for the X - partial
derivatives of Equaticn (33):

Cxg = (CLa + ch) sin &y + (Cyy - Cp,) cos &

Cx“ s CIM sin o - CDH cos @y + '.!‘c'M cos 1in (1)
qu = ch sin o - ch cos Q)

The varjation of thrust vith aircpaed represented by the partial
derivative TC'M is more conveniently expressed in terms of the

rate of cbange of net thrust with airspeed '&, This is accomplished
in the follow’ng steps. Let.

T = Te' (P/2) VoS

Then, as in the derivation of Equation (32),

2T 1 g : .
o' qy8 Te'ye eTe 108 A (42)
Now:
3T _9T 1 U
oV 9u'V, OV (43)
und dU/AV - 1/cos qp, from Reference 4. Also:
To'yr =07¢' M = T.' My cos a Lk
Cu W du' c ) 1 1 ( )
Svbstituting Equations (43) and (4b4) into Equation (42),
XN M S (u5)
95 —
M

The final step requircd {s the substitution of Equaticns (33),
(34), (37}, (39), (40), (41), and (45) into Eqeation (32), and
simplifyinz. When this procedure has teen carried out, th:
1esults roy be suwmmarized as on the first row of Table III. ‘The
other lonzitudiral veloelty derivutives on body axes are obtained
in Yike ~anner.

N § § SIS U
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7.2 Angle of Attack Derivatives

The derivation of the angle of attack derivatives on body axes

is $lluetrated in & single case, as for the longitudinal velocity
3derivatives. The illusvrative example is x.. , defined as

$X 1 . Differentisting Equation (31) wifh respect to W, ama
a Q15

noting that o' = % and JV/OW = ein ¢y from vegs 16 of Refer-
ence b, '
& 1

o 35 - ot tina

Now:

(46)

da M Y.
cxa' o cxa pa ¢ CxM sa' + Cxq g%;' (h?)

From page lU6 of Reference 4;

2a . cos
aw v;

and .

g%, = cos o (48)
Fipally, by substituting Equations (37), (39), (40), (&), (u5),
(47), and (48) into Equaticrn (46), the derivative xo' 1s obtained
as the first row of Table IV. The remainlny angle of attack
derivatives on body ax¢s sre obtained in like manner.

Sideslip Derivatives

The relationships teiween the sideslip deriv.tives on arbitrary
body axes and the sideslip lerivatives on stability axes obtained
ir the wind tunnel are derived on page 61 of Reference L. These
equations are reprcduced in Table V of this report, using modern
notation. Second-ordev derivwtives Llike Yp'o ore included in

the cquaticre of Tables I and II, having the significance of the
rate of change vith angle of att9ck of the side¢s)ip derivative
in quegtion. Formulae for obtaining the second-order sideslip
dcerivativeg directly from wind-tunnel data are included in Tadie

V.

- T P -
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7.€

7.4 Symmetric Rotary Derivatives

The derivation of the symmetric rotary derivatives on body axes
in terms of vind-tunnel or calculated data on stability axes is
1llustrated by the derivation of x3 , defined as 48X _1 .

dq q36
Differentiating Equation (31) vith respect to q and noting that
dV/oq = o, .

2X 1
33 4,3 Cxa (%9)

The disturbence pitching velicity variable q 4s indcpenden.
of angle of attack, Mach number, dynamic pressure, and the other
variables of the problem. Thus, differentiating Equation (40)
with respect to q,

Cxg = CLy » . -Cpy cosqy (50)

The other syrmetric rotary derivatives summarized in Table VI
are derived in like manper.

Asymmetric Rotary Derivatives

The relationships between the rolling and ya' -g or asymmetrlc
rotary derivatives on arbitrary body axes ar . these same
derivatives referred to stability axes are . erived cn pages 71
and 72 of Reference 4. These expressions are complicated by
the neel to resolv: not only the forces and moments on the
body axes, but also the rolling and yawing velocities. The
results of these derivations ere swmarized in Table VII,
including the second-order asymmetric rotary derivatives.

Control Surface Derivatives

Tne co.trol surface derivatives n body axes in terms of wind-
tunnzl data on stability axes mey be derived in a similar manner
to the symmetric rotary derivalives in Section 7.4. This 1s the

. “nsequence of the independence of the contrcl surface distur-
bance angles § with respect to the other variables of the motion.
The boAy axes control surface derivatives are shown in Table VIII.
Second-order control surface derivatives like xg., 5 @ (OX)_}__
oa’ 35 qls
ore not chown in Tuble I, II, or VIXII, but these can be readily
‘ncluded 4f needed.
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8.0 DEVELOPMENT OF AUXILIARY EQUATIONS

A certain numdber of suxiliary equations mist be developed in orlsr
to apply properly the large-disturtance equations of motion poesented
in Tables T and II. Thesc equations are developed in this portion
of the report, followed by the relations needed tc calculate the
:ndications of flight instruments from the computed motions.

8.1 Initisl Condition Iterations

e \~Js'v.----"‘,.‘.-‘ﬂ-\hn<~ P
e a

The steady-flight equations of motion (6) and (7) are used as
initial conditions for the equations of Tebie I and IX. As
pointed out in Section 5.2.1 numerical solutions of these stealdy-
flight equations of motion normally require iteracion because of
the erbitrary functional dependence of °x1 and Oz,l on angle of

sttack. A sug, zted procedure for this solution is outlined in g
this secticu. It is assumed that the airs;wed, altitude, flight
peth ang'e, gross weight, and normal load factor initisl flight
conditions are specifi~A. The suggested fterat.on procedure follcvs:

L

..A"

(1) Select a trial value of angle of attack, and fipd the
corresponding values of c“l and ch fyom wind-tunnel data.

( - (2) Solve for Q) from Fquaticn (9). ,
(3) Uuing.the previous values for ¢, ch O s and Q;, solve 3
6 for Te, from Equations (51) and (52). Th:se equations were '

obtained by the substitution of Equaticns (40) into Equations ,

Tot = 1 -Cy. 8in oy + .Jp, cos + g sin (Fy+0m )+2TQ ai.m:x'1 (51)
el EE?Q[ L 1+ -Dy o ﬁﬁ 1t 1 1.

Tei = 2 [-CLI cos o - CD]. sin o +f2.‘rg cos ((lqkmlcooc; (sa) |
1 1

ein

(4) Plotting the trial solutions for Tey frou Fquations (51) and (52)

against the trial values of a; vwill alwveys lead to & rapid -,7‘
convergence. (&

8.2 Readings of Attitude - Measuring Instruments

The general expression for computing the resdings of the attitude-
reasuring inetrucents in a maneuveriay airplane may be concisely
stated in the notation of Reference (3) as:

Bl - [ 2
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 whare [o] 1s & mirix representing the successive non-irter- .

acting rotationas perforxed by the case of the messuring
instrument to wriive ot the airpiane's orientation and L] 1s

the orientation matrix of Reference 3. Tf the attitude-measuring
fustruments are conventional vertical and directional free gyros,
Equation (53) reduces to Equations (14) and (1¢) of Reference 3.

Readings of Veloeity - Measuring Instruments

In the most geaeral case, velocity-measuring instruments my

‘have sny arbitrary location and orientstion with relation to a
msAneavering airplane. Of course, unless the veloeity-neasuring
instrunents are located at the airplsne’s center of grevity and
are aligned wvith the arbitrary svstem «.f boly axes, the instrurent
readings (correctsd for local-flov distortion position errors
such as upvash or sidevash, instrument errors and reduced to

true speed) will no’ be given by U, V, and W of Equations (5),
(54), or (19). .

A general set of instrument axes may be selected, wit' orsigin

at a radiuc vectos r from the oirplane's center of gravity,
and vith arbitrery orientation angles 'I' eI' ra 01 vith respect

to the body axis system. These gencral 4 .strument axes are
{1lustrated in Figure 6. The true spee’ on instrument axes
may be expressed as:

Y, -Y +@ "z (5%)
vhere

a £[’I+EVI4’]_I“I

= 10+4V+59

= 1P+ JQ+kR

|n|>u€'_tf

s I1x+jy+kze

Equation (54) may be expreesed in Cartesian form using the
Orientation Matrix [L] of Reference 3, but vith vy, 6;, and o.

in place of ¥, 6, and ¢. ‘Thus:

UI U-Ry +Qz
v.| - [LI] V - Pz + Ex (s5)
‘HI W-Qx+Py
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or
Uy - (U - Ry + Qz) cos 01 cos ¥
+ (V- Pz +Rx) cos 61 ein ¥
- (W - & + Py) sin o ' ' ;
Vi = (U-Ry+Qe) (cos vysinegsinBy - sinyicosey) ¥
+ (V - Pz + Rx) (slnyrsinegsindy + cosvzcout)

+(H-Qx+Py)unOIc0|ex

v

Wy = (U-Ry+Q) (cosyrcosersindy + sinvgsineg)
¢ (V - Pz + Rx) (sinvyconegsing; - coﬂxoinol)
+ (W - Qx + Py) cos 8y cos ¢,

In the usual flight instrument arrangement vhere sideslip and 4
angle of attack vanes are provided which are independent of
¢ another, only ihe angle of aituck sigoal is consistent
with the conventions of Figure 3. For this arrangement, the
instrument readings are (neglecting local flow distortions
such as upvash or sidevash):

BI - "‘n.l (VI/UI)

-1 (s6)
op = tan  (Wp/Up) :

Although Equations (55) and (56) would be cuulersome for
computational purposes, consideradble simplificaiion 1s ususlly
possible through Lic neglecu  f emal) terms. For example,
the orientation anglen vp and ¢y vill elmost invariably be
2qual to zero, one or more of the distar.26 x, y, and 2z will
usually be negligible, and the use of the small-disturbance
linear velocity varigbles u', p', and a'vill probably Justify
elininating -he tan™" from Equations (56).

8.4 Readings of Acceleraticn-Measuring Instrumente

As in “he casc of velocity-m:asuring instruments, accecleration-
measurii.g instruments may have arbitrary loeations ani orienta-
tions with respect to the airplane. A vector equation for the
l4near accelerations on instrument axes may be written as:

Y

O Yy

- Y'+_[_\,xy_ o.é.xso.l}x (Ax r) (57)
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‘  where, in addition to the previcus definitions:
iz '.‘..I"!ix*ﬂal |
v -1004?45ﬁ .
A ~1P+egdekxi )

A comparison of Equation (57) with the vector forms of the
equations of motion of the accelerometer and of the wirplane
iteelf leads to an important principle applying to sccelerxration-
neaguring instruments. This principle may be stated as
follovs:

“"The reai..g* along any direction of a lizear
ascelerometer mounted at the airplane’s center
of gravitly ia proportional to the resultant
aerodynamic force (including thrust) in that
direction, and is independent of the airplane's
attitude in space.”

o Because of the impurtance of this prirciple, it is
. derived fror basic considerations in appendix A.

." @ Although lengthy. the generul expressi~ng for linear accelerations
‘ along inetrument exes are presented belovw in Cartesian form.

These equations are derived from the orientation matrix [LI]

used in Equation (55). Thus: '

| Uy [t’: - RV + @ - x (R2Q%)+y(PQ-R)+z(RP+Q)

] VI - [LI] [ -PW +RU + x (PQ*#)-:/(P"’*Z)H(Q!-?) (58)
Wy - QU+ PV 4 x (PR-Q)ey(@Rep)-2(<BeP?)

~; or

* 61 . [ﬁ-avw-x (Reoqz)oy(m-é)oz(nwé)] c030 co8¥y

" +[\':-PW+RU+x (Pqé)-y(y"“n?)u(m-ﬁ)] cosoysinyy

i -[ﬁ-QUﬂ-Wx (PR-é)*y(QRd:")-:(szz)] sing;
v

r * [U-RWQﬂ-x (32+Q2)*}'(PQ4.§)42(RP¢§)](coaWIsinOIsinGI-slni}IcoaoI)
+[?-PH4RU+x (PQ*&)-y(Peme)ﬂ(m-f')] (sinvgsine sin6yecosyycoser)
+[%.J—QU+PV¢x (PR-Q)*)’(QBO?)-:(QZWQ)J sineg cosby

Q&V #Neglecting instrument lag and errors.
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FORM 30~250v

‘;I - [!’J-RWQO-: (32+Q2)+y(pq.ﬁ )n(RP«&)] (cowxcouzunezninvxsimx)
0{9—!’"4&0« (PQd\)-y(Pz-oﬂa)n(Gof')] (einvycosep:in6r-cosvysiney)
v[ﬁ-QlM’Vox (PR-Q)ﬂ'('&é)-s(sze)] c0s0y cCs0y

As in the case of the linear velocities of Equaticns (55), the
orientation angies yy and ¢; vill alsost invariadly be equal to

gero, and one or more of the distances x, y, and ¢ (referred to
airplans body axes) vill usually be either zero or negligibly
smll.

Equations (57) and (58) give the linear accalerations on instrument
axes, in vector and Cartesiar form, respectivei,. To go frcam these
equations to the readings of ectual acceleration-measuring instru-

ments requires consideration of {hree additionsl factors:

These are.:

1. The effects of grevity forces on the suspended or pivoted
mss (sopetires called the seismic element).
c 2. The dynamics of the instrument {tself, vhich is assumed t>
have spring and deiping forces actiag on the suspemled pass,
3. The effects of angular accelerations of the instrument
mounting, when the accelerogmeter riss ic pivoted as a
pendulum.

The treatment used to derive the readings of actusl acceleration-
peasuring instruments follows generally that of Reference 6. The
effects of gravity forces on the suspanded or pivoted mase are
based on the folloving gravity resolution alonz instruaent axes
(using Lquation(S)of Refer=nce 3):
-g 8in €
[gI] - (LI] g sin ¢ cos 9 (59)
€ ¢Cs ¢ Co8 ©
Expanding:
gxI - g [—coseI costI 8inp « cosdy oinwx einé¢ cos 6
-oinel cose cosel
-(sine, 8in6,; cosyy - sinyy cose,) sin 8
BYI '8[( 1 1 51 VI 0 I)

O +(sinvy sinoy siavy + coovy coney) sine cose

]
+ siney €0307 cosé cpsO] , E :;
)
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P

‘31 - g [- (eosvycoseyeiney + oinvp!.not) sin 6
+ (sinygcoseysinGy - ccoypeiney) sine cosé

. eoooleoooleo»eone]

Zn the application of Equations (58) and (59), two types of
linear sccelaration-messuring instruments are disticguished,
the lineer-iype accelsromster and the pendulum-type accelero-
meter with a rotary transducer. The sensitive Airection of the
1insar-type accelerometer is assumed t0 be parallel to one of
the Instrument Axes Xy, Yy, or Zy of Figurc 6. The sensitive

direction of the pendulum-type acccleromzter isz defined by the
orientation of the supprort axis parsllel to one of the Instrument
Axes. For sero signal output, the pendulum arm, the support sxis,
and the sensitive direction of the acceleromster form an orthogonsl
system. By definition, we define the Instrument Axes for this case
es being razmllel to each of the orthogonal directions formed by
the pendulum arm, the support axis, and the sensitive direction.
The orientations of linesr-and pendulum-type accelerometers
relative to Instrument Axes are illustrated in Figure 7.

~ 8.4.1 Linear-Type Accelerometer

e e e B e s
—

‘} ! The transfer function of a linear-type acceleruvmeter is given by
: (1o the notation of Reference 6):
| r 1 (60)
X
Y- * $<_
e f C
vwhere:

T = Accelerometer output, or the disturbed motion of the
seismic element relative to the case, parallel to either
the Xg, Yy or 24 axes (Pigure 7). T has the dimensions

of Length.

szu. » Resultant linear acceleratisn of the casg in the sansitive
direction. 323. 18 equal & 01, \71, or "I of Equation (58),

d%gending upon the sensitive direction of the instrument.
e, {; parallel to the direction of T,

P = Tilt angle of the sensitive dirccetion of the accelerometer
to the herizontal., P2 s equal to gxx/g, gYI/g, ar gZI/g

! Q , of Equation {53), depending upon the sensitive direction cf
! w the instrument, and is normal to T and s<,.




e A 8 A e i = i & e o

fo;‘,ao-m
‘ L XY

DORKAAS ARCRAIT COMPANY, TNC. R SIGUNDOD DVIBION B SEQUNDO, CALIFORNA

Page 32
E8 17935

K = gu'/x
Wy = Yi/a*
Y- aefwx
vhere m' is the seismic mass
k is the spring constaut
4 18 the damping constant

8.4.2 Pendulum-Typs .cceierometer

are defined as in Figure 7, vith unit vectors:

» Sensitive direction

o

15,4

= Norpal to sensitive directicn and support axis

114

= Suzport axise

From Equation (4) of Reference 6:

T Xeg-IQ-n fxa
vhere:
T = 02+0_§+‘rg

- 0_3_4-03+Q9_

N8 +n,_£ +nug

8
N
I

-Tf_g_«o-t':._«fo_g

8 - V35¢Vt£+?ug

K,ﬂn, 5 = Dynamic preperties of the linear sccelerometer.

Equation (60) assumes that the accelerometer is essentially a
linear device, in the sense that the output T ic¢ directly pro-
portional to the iaput sZa, p st any particu. \r frequency.

This assumption is not at all inconsistent with assumptions of
non-linearity £2r the motions of the airplane, since it is not
unususl to find accelerometers with large usable linear rangss.

A generalized transfer function for A pendulum-type sccelerometer
xay be derived using the methods of deference ©. Three directions

(61)

e A A TETE TR

o

Y

L — oy

YD

NNl S S
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T™he moment applied to the pendulum relative to its case Q is:
Q = AT - kT ¢mfxg (62)
vhere: ' ' .

£ - 8,248t 8

Subs®ituting Equation (62) into Equation (61) and taking ths
recultant alnng u:

T e K 1 (63)
\ 2 -
E"-'ts“\‘ G2 tdhptt?
vhere:
K - 2 r——
o sf.-i_t_
8

Vk * n’fgt - n'ﬂt

‘Vl(k + m'rg, - m'ﬁ)t
The following definitions apply to Equation (63):

T = Accelerometer ~ itput or disturbed rotary motion of the
pendulum arm apout its support avis relative to the case,
T 48 measured sbout the support axis u , vhich is parallel
to one of the Instrument Axes X, YI, Zye

V, = Resultant lincar acceleration of the case in 1.s sensitive
direction, along 3. V, is equsl > either UI' Vp ov Wy

of Equation (58) depending upon the orientation of tane
instrupent.

N. = Angular velocity of wicelerometer case ahout thes pendulum
u cupport axia &ivection u. M1, is equal to cither Py, Qq,
RI-

&4 = Componont of the acceleration of gravity along the scceler-
ometer sensitive axis s. g4 1s equal to either 8xyps gYI’ or

ez Of Equation (52), 4epending on the instrument orientstion.
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=

& = Component of the acceleration of grevity elong the norml
tc tos sensitive direct{on and support axis, or slong t.

¥y = Resultant linesr acceleiation of the case along the normal
to the sensitive direction and support axis, or along t.

Bquation (63) demonstrates that the response of a pendulum-type
accelerometer used to measure linear acceleration leons its
sensitive axis) is Aependent on the linear acceleration at right
angles to the sensitive direction. For example, 1 pendulum-type
accelerometer vithout & spring ueed as a wight-downwards lateral
acceleromster vill have a static gain K value spproximately equal
to 1/a, vhere n {s the normal losd factor. In a 2g pullup,

the seismic mass will trevel half as far in response to a given
steady lateral accelerstion as it would in streight flight. Also,
the patursl rrequencyw), is seen to be incressed in & pullup and

the damping retio is decreased.

8.5.3 Peniulun-Type Angular Accelerometer

2be transfer function of & pendulum-type accelerometer used -8
sn angular sccelerometer ia:

T_-x__1
-sA, s 23 {68)
Jpra et

vhere the notation egrees with that for the pendulum~type linear
acceleroniter of Section 8.4.2 except tnat:

X = I/x
W . Ykt

S sl

R e e o o 250 =
ey te s ean g g Tt T 7 re P
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APPENDIX A

THE READING OF A LINEAR ACCELEROMETER AT
THE AIRPLANE' 8 CENIER OF GRAVITY

L~

The important principle that the reading* along any direction of a
linear accelerometer mounted at the airplane’s center of gravity

is proportional to the resultant aerodynamic force (including thrust)
in that direction, and is independent of the airplane's attitude in
space was stat:d in Section 8.4 of this report. This principle is
derived in this Appendix from besic considerations. Letting primed
values refer to the accelerometer's seismic mase, Wewton's lav for
the rate of change of linear momentum for both the sirplapne and the
accelevometer seismic mass is:

¥ + og = oy +AxV)
F ¢+ mge= ' V'+ ! xV'

(_/ The accelerometer is assumed to De located at the airplane's center
of gravity so that the vector r of Equstion (57) equals zero. Since
the accelerometer's cage {s carried with the airplane, N' =4 and
o . V' = ¥, if ve neglect the relatively small velocities of the
seismic mass rclative to its case. Thus:

(x-1)

¥
o

(A-2) §

A

The vector F' represents the external forces applied to the accelers- 4
meter sefocmic mass. Since we are neglecting instrwsent lug or dynanic
effects, F' aris:s entirely from the centering spring on the seismic }
mass. In the usual case this spring is linear and the acceleromcter
readfng is proportional to F'. The vector form of Equation (A-2) showe
further that the accelerometer reading is proportional to the total
aerodynamic force F i{n (e direction in which the rcading is mace.

The absence of the gravity vector from Equation @ -2) p-oves that the
instrument rcading ie fudependent of the airplane's attitude in gpace.

If the accelerometer {s calibrated 30 that 1ts reeding T 1is pade
equal to unity when F'/m'g = 1.0, then Equation (A-.) shows that the
accelerometer re .ds dirs.tly the airplane's load fsc'or, or acrodynamic
force-to-weight ratio tlong its sensitive directinrn,

‘\’5 # Neglecting Iinstrument lass and errors.
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EQUATIONS OF AIRPIANE MOTION SUITABLE FCR CALCULATIGN OF §
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| ] Iy b ¢ Cry Iy
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.. N ', L. ‘% I cosir) v _, L L
L ) ‘y °r, °r,
2

#* /. 8SUMPTIONS:

4

1) Principal axcs (Tyy=0)

2; Constant Longitud{ml <mlceity ()u'-o)

3) Gravity terms simplified (6 « O

"; ¢ =fp A4t

9 Initial syrmetric rlight (Sl P Ry %) ALL = 0)

6) ©om-11 perturtations in sideslip and angle of ettack @8 = B',8a » «')
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TABLE III

LONGITUDIRAL VELOCITY DERIVATIVES ON BODY AYES

(CL, Cp and Cy are assumed to inciude all
runnu?-engine effecte except for the ney
thrust )

e v o b bt it bt & s A A AL el M2 <% W

DFRIVATIVE SYMBOL STABILITY AXES EQUIVALENT
1 2 2

:—i. W Xy (-20p, - Ky, -2q)0p,) cos®qy + (-Cp, - Cp, ) riney
+ {cho cna+ “lclﬂ" 2q1ch) cos al sin Ny + 3—' Wcoc 1@00:01

Rz 1_ .

du' q,8 zy (-2CL1- HICI“-quch) cos“qy + (cDa- Cry) linaa)_
"(CLq'cD],‘"chu'aqchq) cosxy sing; - ? "‘v sin ip cos oy

L 1 .

:—-u, T{S‘ﬁ 'U' (2‘:‘1 + "II.clu +2q_‘lC‘q) cos Gl

aM 1 ' M + 2q,C +g‘?'¥zT-2T'zT)cosal

Y q‘lsc e V) 1Cn“ 1'mq “ m 't ¢y =
* Cug sin o

g_g. q;Sb n, ( ecnl + MCpy +27) qu) cos @)
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TABLE IV

ANGLE OF ATTACK DERIVATIVES ON BODY AXES

(Cr, Op, and Cy are assumed to include all

running-engine effects, except for the

net thrust
DERIVATIVFE SYMBOL STABILITY AXES EQUIVALENT
o 1 Xt (c; .- ) eos?e + (Cp_~Cpy-M,Cpy-2q,Cp, ) cos oin
R a L,” g 1 * (CLy0p) M) Oy 29y Cpg i S |

+ (2CL1+ !1Cl“+2qchq) sinaal + F ’1" cos 1‘1‘ sin oy
9z ! P (-C, - )cosz + (-Cp,~ Cp_-MyC; -29,Cp ) cos sin
o' 38 a CLy” pylees )" %y MCry, 290 & sio a
+ ( 2%1 "1°D" 2q1ch) sin‘e) - = Ty sin ip sin Q)
oL 1 2 (4, + M.C, +2q, C, ) sin
% 5 a e, * S, 2 G Q
M1 2t I tr
g.a. —qTSTE By Cma°°'°1 + ("J.cm“* 2qlcmq+ T & - 2'!‘ci 2°) sin a
oM 1
a&' lec ®., C )
a ma

ON 1
F7 a-l-j ng (2Cn] + MyCny +29) qu) sin o

I L R e SR AR S SR KN

ety mee et

e e At AR e TR A R Y e N S e s v

S s T AT S TN AT S ey

i vmm TR e SAmE ere = g pee T ieas Ly s wAmo e S oTam oY 4o o=

[RUe "
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TABLE V
SIDESLIP DERIVATIVES ON BODY AXES

S N P A

DERIVATIVE| SYMBOL SDABILITY AXES EQUIVALENT
oY 1 Yg?

dpn Yar .

s a& 3 B'a Y o

t ) § ! ) Cp, cos - C, sin

36 -q?‘-s s tg @ ng %
%%{GL) 1

BAIEY ;Sb|  Lgige (Copy = Cnp) cos oy - (Cogy * c,e) sin a
N 1 J C, cos +C, sin

38" 9,5 o s A tp %

d 3Ny 1 'yt c c -
F"iﬁ Lm| e (Cogg * Cug) 08 o + (Crg, - Cog) 80 0

Note:

The sideslip rate derivatjves like yé' ox~ i{dentical in form to

the correspoiding cid~slip derivetivep.




TABLE VI

SYMMETR IC_ROTARY DERIVATIVES ON BODY AXES
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DERIVATIVE SYMBOL STABILITY AXES EQUIVALERT
8 X -Cp. cos a) + sin oy

% o 0 6 s

o pxy x. (- + ) coe + (c + ) sin
Z 1 2. -C; cos - sin

d Py 1 z. “(C;, +Cn)cosy - ( - Cp.) sin
oM ] m. Ca.

21 q;5¢ e é

d dMy 1 m. c
r'i'(a-q) o I "




PERIVATIVE SYMBOL
cos oy sin oy
Y 1 Y. oy -Cy.
P 9 * ¢ v
-9— a_! 1 y' cy - CY - . - . A
3a \8p/ 45 ta' o v cym CY. §
w1 | o |
P 75b ¢ v i
21 |t Sty @
80 \pp/ 7)Sb o' 'ZC‘L . 2
a1 n. €, - .
” ql5b ¢ ] i
Y JR L 30 - ‘n
32 \dp/ 1,50 °a '2°n3 - ¢
oY 1 Y. o .
oF S v Yy A
oY 1 . Cy. Cy. Coye = .
”:, (Qr) ﬁ yVa' Y-ya * Yo Yia CY*
3L 1 t. Cp: = |
or '2150 \ )
C - C [
.a. (g'.') _];.._ l;al ‘&Cl ?:“
T\Oe/ 11 -201_‘,/_- Cny
‘ﬂ “'1— n: C;. + Cn'
o I v v
) R Clig * @
d:/ \or qlb'o 101 '2cn1’ ' 2¢
- e T T YRR IR T ST T I T S A T T T T S e T T " M
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MRIC ROTARY DERIVATIVES ON BODY AXES
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STABILITY AXES EQUIVALENT

COEFFICIENT OF
cos o sin cos? o sin? o
- C c C

e Cn.
a Ma €, -C, -Cp Cn, +Cz, +Cqy
' oy
C‘ - cn Cn -C‘.

¢ v ¢ v

« Cgq.
b § n a C . + C . - C . ‘c . - C « c .
. - 2cf‘.' Bea  te My ‘W 1 7 "u,
* - C . c . .c .
J{ n* 'v nO

Co «

s n - - -
t; - Cn;
'& + Cn‘ Cn‘ c‘.
. + C
a Na Cy. =Cp. -C
nj 4 2 C“ Cn;a * C‘& * Cn. l’a ‘W ny
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TABLE  VIII

CONTROL SURFACE DERIVATIVES OR BODY AXES

(8 1 a genersl control surface perturbation)

DERIVATIVE SYMBOL SMBILITY AXES EQUIVALERT
% .ﬁg xs -cns ¢°3°1’CL5 ulnal

oY 1

26 9,5 '8 s

2z 1 2 C

ﬂ a:g F 3 -Ls cosa].-CD‘5 ein o

% 6%55 38 C,s cos oy - (’Jn8 sin o

oM 1

26 3,5 | "6 ‘ng

:_g ._.1;_ ng Cn8 coc @y + C,s ain oy
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ANGULAR RELATIONSHIPS IN PLANE OF SYMMETRY
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GENERAL INSTRUMENT AXES
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ARPLANE B0y AXES ORDER OFf ROTATIONS
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. ACCELEROMETER ORIENTATIONS RELATIVE
TO INSTRUMENT AXES
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LINEAR - TYPE
ACCELEROWMETER

SEISM\C MAT%S

SUPPORT AX\S
DIRECTION U

PENDULUM = TYPE
ACCELEROWMETER
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